

Video Interactive & Augmented – arbeitsprozessorientiert lebenslang lernen

Ein ganzheitliches E-Learning-Angebot für Beschäftigte mit und ohne Handicap

Foliensatz Team Via4all

Forum Familie, 24.08.2016 Referent: Stefan Wagner

Agenda

- 1. Vortrag zum Projekt
 - Was und Wer ist VIA4all?
 - Technische Umsetzung
 - Auswertung & Ergebnisse der Eye-Tracker Daten
 - Produktion & Erprobung der VIA
- 2. Erkundung der Oberfläche Moodle
 - Im Team anhand von Leitfragen
 - Reflexion der Erkundung
- 3. ggf. Ausblick / Planungen von Lernszenarien

Über das Projekt

Was ist VIA4all?

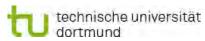
V = Video

I = Interaktiv

A = gestützt durch
Argumente -> mit
Zusatzinformationen

4 = für

all = Alle



Wer ist VIA4all?

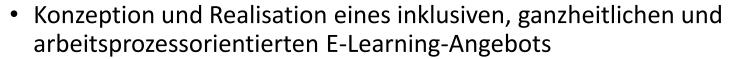
Projektpartner:

Technische Universität Dortmund, Fakultät Rehabilitationswissenschaften

gG soziale Beschäftigung und Qualifizierung in der Stadterneuerung mbH

diakonischer Träger für soziale Dienste mit Angeboten für Menschen mit Behinderung und sozialer Benachteiligung vom Kindes- bis zum Seniorenalter.

Träger von Einrichtungen für berufliche und soziale Teilhabe, WfbM gGmbH



Projektziele

- Interaktive, arbeitsprozessorientierte Lernvideos, inkl. Arbeitsprozess- und Erfahrungswissen
- Einbettung in ganzheitliches E-Learning Szenario
- Modernisierung von (inklusiven) Aus- und Weiterbildungsformaten in der beruflichen Bildung
- Individualisierung und Flexibilisierung beruflichen Lernens
- Zugänglichkeit → didaktische & technische Barrierefreiheit
- Gestaltungsleitlinien für die Erstellung interaktiver, arbeitsprozess- und handlungsorientierter Lernvideos und E-Learning Szenarien

Vorgehen

Vorgehen im Projekt

Aufbau und
Betrieb der
technischen
Infrastruktur

Entwicklung
VIA

Entwicklung
VIA4all
Integration

Evaluation & Qualitätssicherung

Technische Infrastruktur

VIAs
Arbeitsprozessorientierte,
interaktive Lernvideos

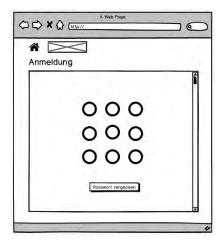
Technische

Infra-

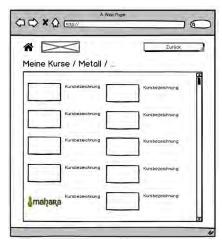
struktur

MAHARA
Community und E-Portfolio
Kompetenzprofile und
Nachrichtenversand

MOODLE
Oberfläche mit Bereitstellung
von Lernmaterialien,
Selbstorganisiertes Lernen


VITERO
Virtuelles Klassenzimmer in
Echtzeit

Moodle

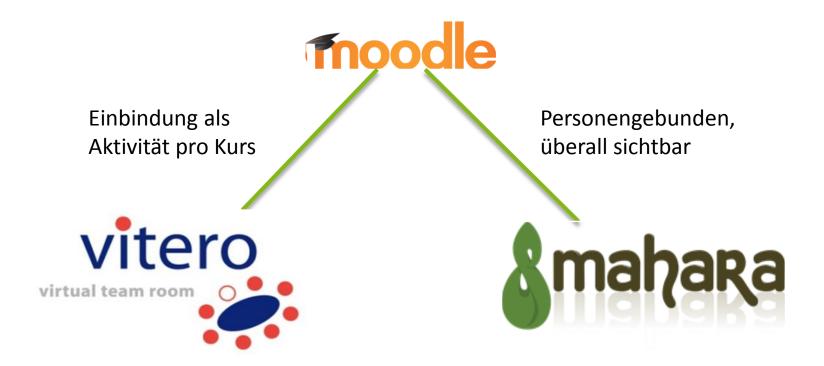

Mockups / erste Ideen

Login

Startseite

Kursübersicht

Kurs


Bedingungen für eine Moodle Oberfläche

- Entwicklung unter Beachtung der Barrierefreiheit
 - z.B. Tastaturbedienbarkeit
 - z.B. Vorlesbar durch Screenreader
 - z.B. Ausreichende Kontrastwerte & Schriftgröße
- Nutzbar auf Tablets und Smartphones
- ⇒ Erstellung eines Layouts, welches auf die verschiedene Geräte reagiert (responsive Design)
- Einfache Verknüpfung mit Mahara und Vitero

Zusammenspiel von Moodle, Mahara und Vitero

Vitero

- Virtuelles Klassenzimmer für 12 Personen
- Integrierte didaktische Werkzeuge, Möglichkeit zum Dateiaustausch
- → Teleteaching/Webinar
- Fördert Synchrones Lernen: Interaktion zwischen Lehrenden und Lernenden
- Ermöglicht Lernen "just in time": bedarfs-und zeitgerecht

Mahara

- E-Portfolio
- Dokumentation, Reflektion & Präsentation
 - Lernfortschritt
 - Kompetenzprofils
 - Biografie
- Community-Funktion
 - Gruppen
 - Nachrichtenversand

Demonstration von moodle.via4all.de

Beispiel für Anmeldung

Technische

Infra-

struktur

Beispiel für Startseite

Weiterentwicklung der Moodle Oberfläche

- Moodle
 - Abhängig von weiterer Gestaltung der Lernszenarien & weiteren Usability-Tests
- Vitero

Technische

Infra-

struktur

- Überarbeitung der Barrierefreiheit
- Mahara
 - Anforderungsaufnahme (Welches Funktionen werden wirklich benötigt?)
 - Einfachere Nutzung

Entwicklung

Entwicklung VIA

Aufnahmen

Auswertung

Produktion VIA

Aufnahmen

Aufnahmen

Pro Kurs:

Eyetracker

- 1x Experte
- 1-2x Novize

Lernvideo

• 1-2x Experte

- Storyboard -

Abbildung vollständiger

Handlung

anhand zertifiziertem Qualifizierungsbaustein - Anpassung -Kamerakalibrierung Kontrollvideos

- Anpassung -Kameraperspektiven Einzelfotos mit Details

Auswertung der Eye-Tracker Daten

- Sukzessive Erstellung von insg. 24 VIA
 - Eye-Tracker (48 Probanden: 24 Experten, 24 Novizen)
 - Vergleich der Blickmuster / Blickrichtung / Dauer etc.
 - lautes Denken

Auswer-

tung

- teilnehmende Beobachtung & Kontrollvideo
- nachgeschaltete Expertengespräch
- Selektive Transkription

Methodisches Vorgehen

- Aufbereitung der Daten mit Dikabilis
 - Fehlerhafte Kalibrierung und mangelhafte Pupillendetektion anpassen
- Import der Datei in D-Lab

Auswer-

tung

- Anlegen von Aufgaben gemäß der einzelnen Arbeitsprozessschritte
- Auswertung der Daten mit "R"
 - Freie Programmiersprache für statistische Berechnung und Grafiken

Auswertung der Daten

- Basis bilden die Rohdaten
- Rohdaten werden von Dikabilis in einer Journaldatei abgelegt
- Journaldatei enthält verschiedene Informationen
 - x-und y-Koordinaten der Feldkamera
 - Indexnummer
 - Timestamp

Auswer-

tung

- Auswertung basiert auf dem "dispersion based algorithm"
 - Addition des Abstandes (Distanz) der x- und y-Koordinaten (dispersion D = [max(x) min(x)] + [max(y) min(y)])

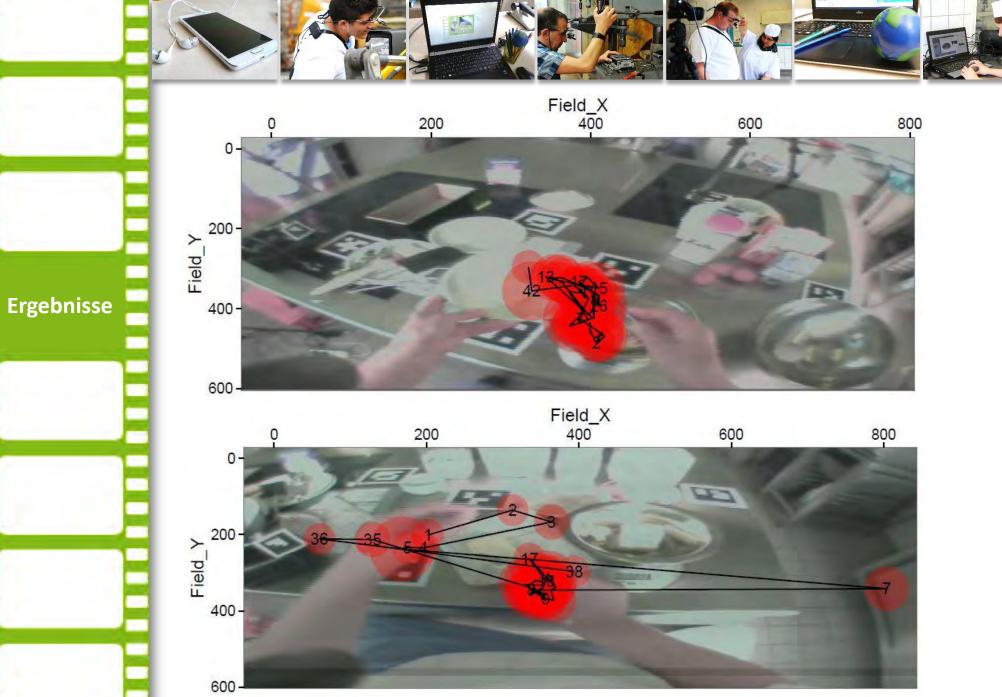
Ergebnisse der Analyse – statistische Parameter

• In den Arbeitsprozessen unterscheiden sich die Experten von den Novizen deutlich hinsichtlich der Dauer

Arbeitsprozess	Experte	Novize
Rührkuchen	7,29 Min.	13,17 Min.
Speisenausgabe	10,50 Min.	13,47 Min.
Radlader	12,64 Min.	16,47 Min.
Pflastern	30,63 Min.	55,94 Min.

Novize macht in drei der vier Arbeitsprozesse mehr Fixationen

Ergebnisse



Ergebnisse der Analyse – statistische Parameter

• In den Arbeitsprozessen unterscheiden sich die Experten und die Novizen kaum merklich hinsichtlich der mittleren Fixationsdauer

Arbeitsprozess	Experte	Novize
Rührkuchen	259,28ms	264,85ms
Speisenausgabe	242,18ms	236,16ms
Radlader	236,52ms	254,15ms
Pflastern	178,89ms	169,29ms

Ergebnisse

VÍA & all

Ergebnisse Blickbewegungsanalyse

Ergebnisse

- Rührkuchen
 - Novize ist empfänglicher für Ablenkungen
 - Blickbewegungen des Novizen haben z.T. einen größeren Radius
 - Novize fixiert mehrmals das Rezept
 - Expertin fixiert länger, wenn eine genaue Inspektion notwendig ist
- Speisenausgabe
 - Begrenzte Unterschiede im Blickverhalten des Experten und des Novizen
 - In Arbeitsprozessschritten in denen Instrumente abgelesen werden müssen/etwas notiert werden muss, konzentrieren sich die Blickbewegungen auf die Instrumente
 - Blickzuwendungen des Experten sind z.T. lokal begrenzter und dauern länger an
- Radlader
 - Blickbewegungen des Experten weisen einen größeren Radius auf
- Pflastern
 - Blickbewegungen des Experten und Novizen unterscheiden sich hinsichtlich ihres Radius

Schlussfolgerungen

Schlussfolgerungen

- Blickbewegungen scheinen mit den Anforderungen der Aufgabe verbunden zu sein
 - Blick geht dorthin, wo nachfolgend eine Handlung ausgeführt wird
 - Blickbewegungsausführungen werden mit Blicken kontrolliert
- Zielbezogenes Blickverhalten
- Unterschiede hinsichtlich der visuellen Spannweite der Blicke
- Novizen scheinen teilweise nicht über die visuellen Muster verfügen, die die Ausführung einer konkreten Handlung erleichtern
- Statistischen Parameter müssen kontextabhängig bewertet werden
 - Fixationsdauern sollten in Bezug auf die konkrete Aufgabe interpretiert werden
 - Fixationsanzahl sollte in Beziehung zur Dauer der Aufgabenbearbeitung gesetzt werden
- Blickverhalten der Novizen deutet z.T. auf mehr Unruhe hin

Schwierigkeiten beim Eye-Tracking

Mobilität des Eye-Trackers

Schwierig-

keiten

- Außenaufnahmen machen eine umfangreichere Rekalibrierung notwendig
 - Sonnenstrahlung ist für die Corneal-Messung problematisch
- Falsch positive Detektion der Pupille
 - Führt zu falsch positiven Schätzungen der Blickrichtung
- Probanden zeigen in den Aufnahmen ein anderes Blickverhalten als bei der Kalibrierung
 - Extrembewegungen (oben/unten/seitlich) können schwer detektiert werden
- Optimale Positionierung der Augenkamera ist fast unmöglich
 - Kompromisse bei der Ausrichtung sind notwendig

Implikationen für die Lernvideos

- Hinweise zum Umgang mit den Zutaten im Arbeitsprozess Rührkuchen
- Hinweise zur der Prüfung des Gargrades
- Hinweise zur Kontrolle der Arbeitsmittel
- Hinweise zum Aufnehmen und Verladen von Lasten
- Hinweise zur Qualitätskontrolle

Resultat

Produktion VIA

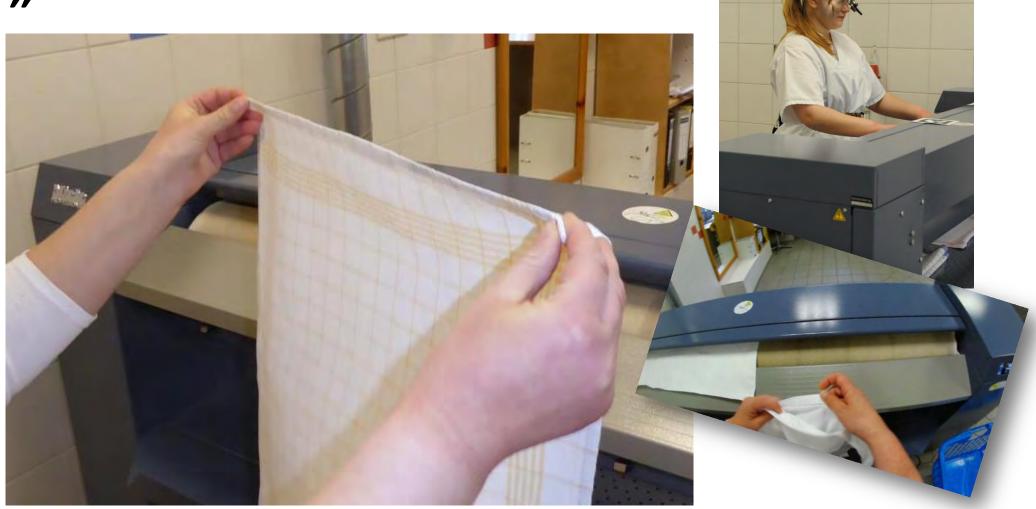
Lernvideos: VIAs

- Erschließung der Videoinhalte durch Datenauswertung
 - Eye-Tracking

- Expertengespräche
- teilnehmende Beobachtung
- Aufbau der Lernvideos entlang von Arbeitsprozessen
 - vollständige Handlung
 - Arbeitsprozess & Hintergrundinformationen (Hygiene, Sicherheit etc.)
- Eingebundenheit in die Lernumgebung (moodle)
- Stellen das Zentrum der zu entwickelnden Lernszenarien dar

"Speisenausgabe"

/IA



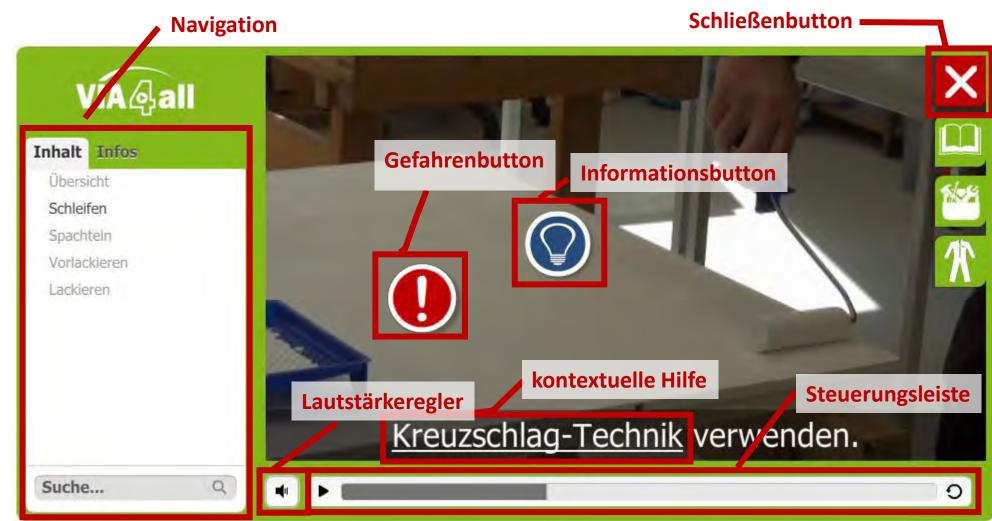
/IΑ

"Flachwäsche"

/IA

"geformte Teile"

"Rührkuchen"



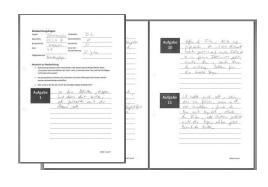
Video

Barrierefreiheit der VIAs

- Lerninhalte sind zusätzlich zu den "Grundvideos" visuell und auditiv unterstützt
- Vorlesefunktion für viele (lange) Textelemente
- Wörterbuch in leichter Sprache
- Grafiken angelehnt und genehmigt von Metacom
- Ausreichende Farbkontraste

VIA

• Ermöglichen ein individuelles Lerntempo



moodle Erkundung

Standardisierte Erprobungen flächendeckend

Zielsetzung:

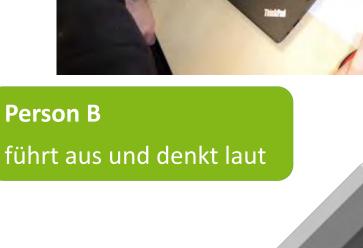
- Überprüfung der Usability
- Navigation
- Verständlichkeit

moodle Erkundung

Website: http://moodle.via4all.de/

Erkundung anhand der Leitfragen

Person A

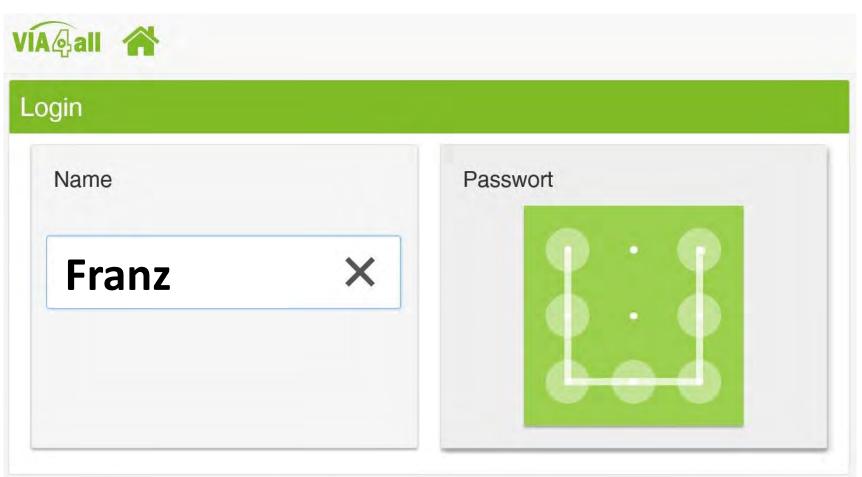

liest Fragen vor und notiert Anmerkungen

Person B

ggf. nach 7 Minuten Wechsel

Zeit: 15 Minuten

Erkundung



Ergebnisse der moodle Erkundung

Erkundung

Vielen Dank für Ihre Aufmerksamkeit!

ViaTeam:

TU Dortmund:

- Martina Kunzendorf
- Denise Materna
- Andreas Feldmann
- Yvonne Soeffgen

Hannoversche Werkstätten gemGmbH:

- Stefan Wagner